If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9n^2+6n-298=0
a = 9; b = 6; c = -298;
Δ = b2-4ac
Δ = 62-4·9·(-298)
Δ = 10764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10764}=\sqrt{36*299}=\sqrt{36}*\sqrt{299}=6\sqrt{299}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{299}}{2*9}=\frac{-6-6\sqrt{299}}{18} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{299}}{2*9}=\frac{-6+6\sqrt{299}}{18} $
| -7x=5(x+4) | | 4x+20-8x=-36 | | 12^x=4^x-1 | | –2t=4 | | 2=d/10 | | 2x-6=8x–18 | | 150=y*12 | | 4(1x+6)=64 | | 35=b−16 | | 5y+-12=32 | | 4/9(y-18)-30=6 | | 3h(=–4h2–2h) | | 15n^2-6n-1195=0 | | 4/9(x-18)-30=6 | | h−45=34 | | 20+8(a-11)=-13 | | 3n2+9=165 | | 14=s−11 | | 7+3x-3=25 | | 53+w=97 | | 0,5x+5=(1/6)x+6 | | |2x+3|=-5 | | –4m+9=–7m | | 2(–3p–15)=–6 | | Y=0.02x+5 | | x^2-8x-63=-10xx2−8x−63=−10x | | 9X^2-3x-598=0 | | 9X^2+3x-598=0 | | 90+(7x+16)+39=180 | | 3(2e+9)=39 | | (5/4)+17x=(4/4)+18x-0,5 | | 210=y*30 |